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Condition and Condition Number of a Matrix 
 

In the solution of a linear system of equations or equivalently a matrix-vector equation 
of the form 
 

𝐴𝑥 = 𝑏, 
 
where A is a matrix, 𝑏 is the known vector and 𝑥 is the vector that is the solution of the 
process, we know that if the matrix A is singular then there is either a range of solutions 
or no solution, but in either case standard method for solving the equation – such as 
Gaussian elimination1 or LU factorisation2 - will fail. However, in cases when the matrix 
is nearly singular (within some concept of numerical accuracy in computing) then the 
expectation is that its automatic solution could also be problematic, in that small 
changes in the problem data can result in large changes in the solution. Given that the 
data that make up the matrix-vector system in most cases are prone to error, whether 
this arises for example from numerical approximation, measurement error or rounding 
error, then the sensitivity in the matrix-vector system will be expected to magnify the 
error and the significance of the solution that arises would be harmed.  
 
In numerical analysis the concept of the condition of the matrix seeks to assess the 
quality of a matrix for the purposes of solving the linear system of equations above. The 
determination of a condition number is a quantification of the condition of the matrix; a 
matrix with a low condition number is deemed to be well-conditioned and now problems 
are envisaged in the solution and a matrix with a very high condition number is termed 
ill-conditioned and the ‘solution’ of the matrix-vector system has to be treated with care. 
 
Let us consider an example. The following equation is ‘close’ to being singular in that the 
second row is similar to the first row: 
 

(
1 1

0.999 1.001
) (

𝑥1

𝑥2
) = (

2
2

), 

 

but the solution is strictly (
𝑥1

𝑥2
) = (

1
1

). 

 
Let us now introduce an error of 0.000001 in 𝑏 
 

(
1 1

0.999 1.001
) (

𝑥1

𝑥2
) = (

2.0000001
2

) 

 

the solution is (
1.000501
0.999500

) (to 6 decimal places); an error of 0.000001 in the data 

results in an error of 0.0005 in the solution – a magnification of 500.  
 
Similarly, if we introduce an error of 0.000001 in an element of A 
 

(
1 1.000001

0.999 1.001
) (

𝑥1

𝑥2
) = (

2
2

), 

 

the solution is (
0.999499
1.000500

); a similar magnification of the error to the previous example.  

 

 
1 Gaussian Elimination 
2 LU Factorisation 
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The magnification of the error through small changes in the input data can be illustrated 
by the method of plotting the graph in solving simultaneous equations3. When the two 
equations are similar, the lines that correspond to the equations lie close together, as 
shown in the following illustration. 
 
 
 
In this case, the solution, where the lines cross, is not clear-cut. If there are small 
changes in the equations that define the lines then the apparent solution is 
disproportionately changed. 
 
If the determinant of a matrix is zero then the matrix is singular. Hence, if the 
determinant is evaluated and a value of zero is obtained then that is an indication of 
problems in the ensuing solution of the linear system of equations. It may be thought 
therefore that a ‘small’ determinant indicates an ill-conditioned matrix. This is in fact not 
strictly the case; it is possible for a matrix to have a small determinant but still be well 
conditioned. For example a large diagonal matrix with all its diagonal elements equal to 
0.1 has a ‘small’ determinant of 10-n (where n is the dimension of the matrix), but for 
practical computing purposes it is clearly not significantly different from the identity 
matrix and does not present any problems when it is solved over. 
 
The condition number relates the sensitivity of the relative error in the solution 𝑥 to 
relative errors in the data 𝑏 . Let 𝛿 represent the error in 𝑏 and let 𝜀 be the 

corresponding error in the solution 𝑥: 
 

𝐴(𝑥 + 𝜀) = 𝑏 + 𝛿. 

 
Given that 𝐴𝑥 = 𝑏 then 𝐴𝜀 = 𝛿 also follows from the equation above. 

 
In the following analysis the condition number is defined using the concepts of vector 

norm4 and matrix norm5. The relative error in the right hand side is 
‖𝛿‖

‖𝑏‖
=

‖𝐴𝜀‖

‖𝐴𝑥‖
 and the 

corresponding relative error in the solution is 
‖𝜀‖

‖𝑥‖
 . Let us now consider the ratio of the 

relative error in the solution to the relative error in the input: 
 

‖𝜀‖‖𝑏‖

‖𝑥‖‖𝛿‖
=

‖𝐴−1𝛿‖‖𝐴𝑥‖

‖𝑥‖‖𝛿‖
≤

‖𝐴−1‖‖𝛿‖‖𝐴‖‖𝑥‖

‖𝑥‖‖𝛿‖
= ‖𝐴−1‖‖𝐴‖, 

 
where 𝐴−1 is the inverse6 of the matrix 𝐴. 
 
The quantity ‖𝐴−1‖‖𝐴‖ is termed the condition number of the matrix 𝐴 and we often 
write: 

𝜅(𝐴) = ‖𝐴−1‖‖𝐴‖. 
 
Note that the value of the condition number depends on the matrix norm. However, the 
purpose of the condition number is to provide an indication of the suitability of the 
matrix for solving over and to estimate the loss of significance. These purposes can be 
met with any of the different types of norm, and hence if there is a choice of matrix norm 

 
3 Graphical solution of simultaneous equations 
4 Vector Norm 
5 Matrix Norm 
6 Identity and Inverse Matrix 
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in the evaluation of the condition number then it is recommended that the most 
convenient or most efficient one is chosen. 
 
Examples of determining the condition number of 2x2 and 3x3 matrices are given 
below. The Excel spreadsheet7 contains these examples and allows experimentation 
with the elements of the matrix A to investigate its effect on condition number. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
7 Condition Number (Spreadsheet) 

 
Example: The Condition Number of a 2x2 Matrix 
 

For the matrix 𝐴 = (
3 −2

−1 4
), ‖𝐴‖1 = 6 , ‖𝐴‖∞ = 5 , ‖𝐴‖𝐹 = √30 = 5.4772 to four 

decimal places. 
 

The inverse 𝐴−1 = (
0.4 0.2
0.1 0.3

) , ‖𝐴‖1 = 0.5 , ‖𝐴‖∞ = 0.6 , ‖𝐴‖𝐹 = 0.54772 to four 

decimal places. 
 

Hence the condition number in the 1-norm is 𝜅1(𝐴) = 6⨉0.5=3. Similarly 

𝜅∞(𝐴) = 5⨉0.6=3 and 𝜅𝐹(𝐴) = 5.4772⨉0.54772=3. 

 
This example and another example for the condition number of a 3x3 matrix can 
be found on the associated spreadsheet. 
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